Elasticity

From DispersiveWiki
(Redirected from Two-speed wave equations)
Jump to navigationJump to search

Equations arising from modeling elastic media in physics are typically generalisations of wave equations in which different components of the system may have different speeds of propagation; furthermore, the dispersion relation may not be isotropic, and thus the speed of propagation may vary with the direction of propagation.

Two-speed model

A particularly simple model for elasticity arises from a two-speed wave equation system of two fields and , with propagating slower than , e.g.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Box u = F(U, DU), ~\Box_s v = G(U, DU)}

where and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Box_s = s^2 \Delta - \partial_t^2} for some Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0 < s < 1} . This case occurs physically when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u} propagates at the speed of light and v propagates at some slower speed. In this case the null forms are not as useful, however the estimates tend to be more favourable (if the non-linearities Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F, G} are "off-diagonal") since the light cone for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u} is always transverse to the light cone for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle v} . One can of course generalize this to consider multiple speed (nonrelativistic) wave equations.

Examples of two-speed models include