Elasticity
Equations arising from modeling elastic media in physics are typically generalisations of wave equations in which different components of the system may have different speeds of propagation; furthermore, the dispersion relation may not be isotropic, and thus the speed of propagation may vary with the direction of propagation.
Two-speed model
A particularly simple model for elasticity arises from a two-speed wave equation system of two fields and , with propagating slower than , e.g.
where and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Box_s = s^2 \Delta - \partial_t^2} for some Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0 < s < 1} . This case occurs physically when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u} propagates at the speed of light and v propagates at some slower speed. In this case the null forms are not as useful, however the estimates tend to be more favourable (if the non-linearities Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F, G} are "off-diagonal") since the light cone for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u} is always transverse to the light cone for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle v} . One can of course generalize this to consider multiple speed (nonrelativistic) wave equations.
Examples of two-speed models include