Quadratic NLS

From DispersiveWiki
Revision as of 22:36, 29 July 2006 by Ojcoolissimo (talk | contribs)
Jump to navigationJump to search

Quadratic NLS

Equations of the form

which a quadratic function of its arguments are quadratic nonlinear Schrodinger equations.


Quadratic NLS on R

  • Scaling is
  • For any quadratic non-linearity one can obtain LWP for CaWe1990, Ts1987.
  • If the quadratic non-linearity is of or type then one can push LWP to KnPoVe1996b.
    • This can be improved to the Besov space [MurTao-p]. The bilinear estimates fail for references:NaTkTs-p NaTkTs2001.
  • If the quadratic non-linearity is of type then one can push LWP to KnPoVe1996b.
  • Since these equations do not have conservation it is not clear whether there is any reasonable GWP result, except possibly for very small data.
  • If the non-linearity is then there is GWP in thanks to conservation, and ill-posedness below by Gallilean invariance considerations in both the focusing [KnPoVe-p] and defocusing [CtCoTa-p2] cases.

====Quadratic NLS on Bo1993. In the Hamiltonian case () this is sharp by Gallilean invariance considerations [KnPoVe-p]

  • If the quadratic non-linearity is of or type then one can push LWP to KnPoVe1996b.
  • In the Hamiltonian case (a non-linearity of type ) we have GWP for by conservation. In the other cases it is not clear whether there is any reasonable GWP result, except possibly for very small data.

====Quadratic NLS on

  • For any quadratic non-linearity one can obtain LWP for CaWe1990, Ts1987.
    • In the Hamiltonian case () this is sharp by Gallilean invariance considerations [KnPoVe-p]
  • If the quadratic non-linearity is of or type then one can push LWP to St1997, references:CoDeKnSt-p CoDeKnSt-p.
    • This can be improved to the Besov space [MurTao-p].
  • If the quadratic non-linearity is of type then one can push LWP to references:Ta-p2 Ta-p2.
  • In the Hamiltonian case (a non-linearity of type ) we have GWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s \ge 0\,} by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} conservation. In the other cases it is not clear whether there is any reasonable GWP result, except possibly for very small data.
    • Below Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} we have ill-posedness by Gallilean invariance considerations in both the focusing [KnPoVe-p] and defocusing [CtCoTa-p2] cases.

Quadratic NLS on T^2

  • If the quadratic non-linearity is of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \underline{uu}\,} type then one can obtain LWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s > -1/2\,} references#Gr-p2 Gr-p2

====Quadratic NLS on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R^3</math \ge === * Scaling is <math>s_c = -1/2.\,}

  • For any quadratic non-linearity one can obtain LWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s \ge 0\,} CaWe1990, Ts1987.
  • If the quadratic non-linearity is of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \underline{uu}\,} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u u\,} type then one can push LWP to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s > -1/2.\,} St1997, references:CoDeKnSt-p CoDeKnSt-p.
  • If the quadratic non-linearity is of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u \underline{u}\,} type then one can push LWP to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s > -1/4.\,} references:Ta-p2 Ta-p2.
  • In the Hamiltonian case (a non-linearity of type Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |u| u\,} ) we have GWP for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s \ge 0\,} by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L^2\,} conservation. In the other cases it is not clear whether there is any reasonable GWP result, except possibly for very small data.
    • Below we have ill-posedness by Gallilean invariance considerations in both the focusing [KnPoVe-p] and defocusing [CtCoTa-p2] cases.

====Quadratic NLS on type then one can obtain LWP for references#Gr-p2 Gr-p2